1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
// Copyright 2019-2022 Clemens Lutz
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Data set generators for generating database relations.
//!
//! The generators produce relation attributes following a random distribution.
use num_traits::FromPrimitive;
use crate::error::{ErrorKind, Result};
use std::convert::TryFrom;
use std::ops::Range;
use rand::distributions::{Distribution, Uniform};
use rand::seq::SliceRandom;
use rand::{thread_rng, Rng};
use rayon::prelude::*;
use zipf::ZipfDistribution;
/// Specifies that the type is suitable to be a join, grouping, or partitioning key.
///
/// A key attribute is a primitive type (e.g., an integer or floating point type).
/// It reserves a `NULL` value in it's value range and `usize` values map to a
/// unique key value.
///
/// The `NULL` value is expected to have a binary representation of all ones. For
/// signed integers, that value equals -1, for unsigned integers, the value
/// equals 0xF...F.
///
/// The `NULL` value in Rust must be kept in sync with the `NULL` value in C++
/// and CUDA.
pub trait KeyAttribute: Sized + 'static {
fn null_key() -> Self;
fn try_from_usize(x: usize) -> Result<Self>;
}
impl KeyAttribute for i32 {
fn null_key() -> Self {
-1
}
fn try_from_usize(x: usize) -> Result<Self> {
Self::try_from(x).map_err(|_| {
ErrorKind::IntegerOverflow("Failed to covnert from usize".to_string()).into()
})
}
}
impl KeyAttribute for i64 {
fn null_key() -> Self {
-1
}
fn try_from_usize(x: usize) -> Result<Self> {
Self::try_from(x).map_err(|_| {
ErrorKind::IntegerOverflow("Failed to covnert from usize".to_string()).into()
})
}
}
/// Generator for relations with uniform distribution.
pub struct UniformRelation;
impl UniformRelation {
/// Generates a primary key attribute.
///
/// The generated keys are unique and contiguous. The key range starts from
/// 0 and ends before, i.e. excluding, attr.len(). Keys are placed at random
/// locations within the slice.
///
/// `selectivity` specifies the join selectivity in percent. An according
/// percentage of keys are set to the `NULL` value. By default (`None`), the
/// selectivity is 100%.
pub fn gen_primary_key<T: KeyAttribute>(
attr: &mut [T],
selectivity: Option<u32>,
) -> Result<()> {
let selectivity = selectivity.unwrap_or_else(|| 100);
let percent = Uniform::from(0..=100);
let mut rng = thread_rng();
attr.iter_mut()
.by_ref()
.zip(0..)
.map(|(x, i)| {
T::try_from_usize(i).map(|i| {
let val = if percent.sample(&mut rng) <= selectivity {
i
} else {
T::null_key()
};
*x = val
})
})
.collect::<Result<()>>()?;
attr.shuffle(&mut rng);
Ok(())
}
/// Generates a primary key attribute in parallel.
///
/// The generated keys are unique and contiguous. The key range starts from
/// 0 and ends before, i.e. excluding, attr.len(). Keys are placed at random
/// locations within the slice.
///
/// `selectivity` specifies the join selectivity in percent. An according
/// percentage of keys are set to the `NULL` value. By default (`None`), the
/// selectivity is 100%.
pub fn gen_primary_key_par<T: Clone + Send + KeyAttribute>(
attr: &mut [T],
selectivity: Option<u32>,
) -> Result<()> {
let selectivity = selectivity.unwrap_or_else(|| 100);
let percent = Uniform::from(0..=100);
let mut shuffled: Vec<(usize, T)> = (0..(attr.len()))
.into_par_iter()
.map_init(thread_rng, |mut rng, i| {
T::try_from_usize(i).map(|i| {
let val = if percent.sample(&mut rng) <= selectivity {
i
} else {
T::null_key()
};
(rng.gen(), val)
})
})
.collect::<Result<_>>()?;
shuffled.as_mut_slice().par_sort_unstable_by_key(|x| x.0);
attr.par_iter_mut()
.zip_eq(shuffled.into_par_iter())
.for_each(|(x, t)| *x = t.1);
Ok(())
}
/// Generates a foreign key attribute based on a primary key attribute.
///
/// The generated keys are sampled from the primary key attribute, that is,
/// they follow a foreign-key relationship. If the primary keys are unique,
/// then the generated foreign keys follow a uniform distribution.
pub fn gen_foreign_key_from_primary_key<T: Copy>(fk_attr: &mut [T], pk_attr: &[T]) {
let mut rng = thread_rng();
fk_attr
.iter_mut()
.by_ref()
.zip(pk_attr.iter().cycle())
.for_each(|(fk, pk)| *fk = *pk);
fk_attr.shuffle(&mut rng);
}
/// Generates a uniformly distributed attribute.
///
/// The generated values are sampled from `range`.
pub fn gen_attr<T: FromPrimitive>(attr: &mut [T], range: Range<usize>) -> Result<()> {
let mut rng = thread_rng();
let between = Uniform::from(range);
attr.iter_mut()
.by_ref()
.map(|x| {
FromPrimitive::from_usize(between.sample(&mut rng))
.ok_or_else(|| {
ErrorKind::IntegerOverflow("Failed to convert from usize".to_string())
.into()
})
.map(|r| *x = r)
})
.collect::<Result<()>>()?;
Ok(())
}
/// Generates a uniformly distributed attribute in parallel.
///
/// The generated values are sampled from `range`.
pub fn gen_attr_par<T: FromPrimitive + Send>(
attr: &mut [T],
range: Range<usize>,
) -> Result<()> {
let between = Uniform::from(range);
attr.par_iter_mut()
.map_init(
|| thread_rng(),
|mut rng, x| {
FromPrimitive::from_usize(between.sample(&mut rng))
.ok_or_else(|| {
ErrorKind::IntegerOverflow("Failed to convert from usize".to_string())
.into()
})
.map(|r| *x = r)
},
)
.collect::<Result<()>>()?;
Ok(())
}
}
/// Generator for relations with Zipf distribution.
pub struct ZipfRelation;
impl ZipfRelation {
/// Generates an attribute following the Zipf distribution.
///
/// The generated values are sampled from 1 to num_elements (inclusive).
/// Note that the exponent must be greather than 0.
///
/// In the literature, num_elements is also called the alphabet size.
pub fn gen_attr<T: FromPrimitive>(
attr: &mut [T],
num_elements: usize,
exponent: f64,
) -> Result<()> {
let mut rng = thread_rng();
let between = ZipfDistribution::new(num_elements, exponent).map_err(|_| {
ErrorKind::InvalidArgument(
"ZipfDistribution requires num_elements and exponent greater than 0".to_string(),
)
})?;
attr.iter_mut()
.by_ref()
.map(|x| {
FromPrimitive::from_usize(between.sample(&mut rng))
.ok_or_else(|| {
ErrorKind::IntegerOverflow("Failed to convert from usize".to_string())
.into()
})
.map(|r| *x = r)
})
.collect::<Result<()>>()?;
Ok(())
}
/// Generates an attribute following the Zipf distribution in parallel.
///
/// The generated values are sampled from 0 to num_elements (exclusive).
/// Note that the exponent must be greather than 0.
///
/// In the literature, num_elements is also called the alphabet size.
pub fn gen_attr_par<T: FromPrimitive + Send>(
attr: &mut [T],
num_elements: usize,
exponent: f64,
) -> Result<()> {
let between = ZipfDistribution::new(num_elements, exponent).map_err(|_| {
ErrorKind::InvalidArgument(
"ZipfDistribution requires num_elements and exponent greater than 0".to_string(),
)
})?;
// ZipfDistribution generates elements in range [1, num_elements]. Thus,
// need to substract 1 to get a range [0, num_elements[.
attr.par_iter_mut()
.map_init(
|| thread_rng(),
|mut rng, x| {
FromPrimitive::from_usize(between.sample(&mut rng) - 1)
.ok_or_else(|| {
ErrorKind::IntegerOverflow("Failed to convert from usize".to_string())
.into()
})
.map(|r| *x = r)
},
)
.collect::<Result<()>>()?;
Ok(())
}
}