1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
// Copyright 2019-2022 Clemens Lutz
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Radix partition operators for CPU and GPU.
//!
//! # Overview
//!
//! CPU and GPU partitioning operators are compatible. The devices can cooperate
//! to partition a relation in parallel. Note that this only holds for equivalent
//! operator algorithms, i.e., `chunked_radix_partition_swwc` cannot be combined
//! with `chunked_radix_partition`.
//!
//! Provided is one radix partitioning algorithm, chunked radix partitioning with
//! software write-combine buffering (SWWC). This algorithm is described by Schuh
//! et al. in Section 6 of "An Experimental Comparison of Thirteen Relational
//! Equi-Joins in Main Memory".
//!
//! # Thread-safety
//!
//! The radix partitioning operators are designed to be thread-safe. Although the
//! input data can be shared between threads, threads should typically work on
//! disjuct input partitions for correct results. In contrast, each thread must
//! have exclusive ownership of its output and intermediate state buffers.
//!
//! # Padding
//!
//! It is important to note that partitions are padded to, at minimum, the
//! cache-line size. This is necessary for SWWC buffering because cache-lines
//! are written back to memory as a whole. However, partition offsets are not
//! naturally aligned, because partitions can have any size. Therefore,
//! all partitions are padded in front by, at minimum, the length of a cache-line.
//! The cache-alignment is also necessary for non-temporal SIMD writes, which
//! must be aligned to their SIMD vector length.
//!
//! # Combining CPU histogram with a GPU partitioner
//!
//! CPU and GPU histograms and radix partitioners can be mixed and matched.
//! For example, `CpuHistogramAlgorithm::Chunked` computes the exact same result
//! as `GpuHistogramAlgorithm::Chunked`.
//!
//! Combining a CPU histogram with a GPU partitioner saves us from transferring
//! the keys twice over the interconnect, once for the histogram and once for
//! partitioning. Computing a histogram is light-weight and should be close to
//! the memory bandwidth. See Polychroniou et al. "A comprehensive study of
//! main-memory partitioning and its application to large-scale comparison-
//! and radix-sort.
//!
//! The reasoning is that the required histograms are cheap to compute. The
//! target size at maximum 2^12 buckets, which is only 32 KiB and should fit
//! into the CPU's L1 cache. This upper bound for buckets is given by the
//! GPU hardware and partitioning algorithm.
//!
//! # Optimizations and tuning
//!
//! ## Hardware prefetching
//!
//! On most CPU architectures, the behavior of the hardware prefetcher can be
//! tuned using model-specific registers (MSRs). On POWER9, disabling N-stride
//! prefetching and setting an aggressive prefetch depth increases the
//! throughput of the prefix sum and partitioning.
//!
//! ## Loop unrolling
//!
//! Manual loop unrolling is a well-known optimization. For the POWER9
//! architecture, loading 128-byte cachelines with a sequence of SIMD
//! instructions improves throughput. However, as the VSX instruction set
//! doesn't support gather-scatter memory operations, this is only a load
//! optimization and not a "pure" SIMD implementation.
//!
//! ## SIMD vectorization
//!
//! Keys are hashed using VSX instructions on POWER9.
//!
//! ## Data hazard avoidance
//!
//! Out-of-order execution stalls if there is a read-after-write hazard in the
//! CPU pipeline. This occurs in the prefix sum due the memory dependency on the
//! previous value of a histogram bucket. As only small histograms are affected,
//! the histogram can be replicated within the L1 cache for low fanouts, and use
//! a single copy per thread for high fanouts.
//!
//! # Copyright notes
//!
//! The C/C++ CPU code is based on [code kindly published by Cagri Balkesen and
//! Claude Barthels][mchj]. As such, we adhere to their copyright and license
//! (MIT) in derived code. Modifications are licensed under Apache License 2.0.
//!
//! [mchj]: https://www.systems.ethz.ch/sites/default/files/file/PublishedCode/multicore-distributed-hashjoins-0_1.zip
//! ## Summary of changes
//!
//! We have made several changes to the original code. These include:
//!
//! - Fix race condition in SWWC partitioning variant. Each thread writes its
//! result into a separate chunk with padding between chunks and (within each
//! chunk) partitions. The race condition occurs because the flushes are
//! aligned to a cacheline. Thus, the first flush of a thread might overwrite
//! the last flush of its neighboring thread. A (potential) drawback is that
//! resulting partitions are non-contiguous.
//!
//! - Support different tuple types at run-time instead of at compile-time.
//! Implemented by instantiating C++ templates with multiple types instead of C
//! preprocessor.
//!
//! - Split prefix sum and partitioning into separate functions. This
//! facilitates CPU microarchitecture optimization and allows recombination
//! with equivalent GPU kernels.
//!
//! - Add SIMD prefix sum variant for IBM POWER9.
//!
//! - Add SIMD partitioning variant for IBM POWER9.
//!
//! - Avoid data hazards in the prefix sum.
//!
//! - Tune the hardware prefetcher for IBM POWER9.
//!
//! - Add SWWC flush variants for POWERPC64 VSX and x86_64 AVX-512.
use super::{
fanout, HistogramAlgorithmType, PartitionOffsetsMutSlice, PartitionedRelationMutSlice,
RadixPartitionInputChunk, Tuple,
};
use crate::constants;
use crate::error::{ErrorKind, Result};
use numa_gpu::runtime::allocator::{Allocator, DerefMemAllocFn, DerefMemType};
use numa_gpu::runtime::memory::DerefMem;
use numa_gpu::utils::CachePadded;
use rustacuda::memory::DeviceCopy;
use std::ffi::c_void;
use std::{mem, ptr};
extern "C" {
fn cpu_swwc_buffer_bytes() -> usize;
fn cpu_chunked_prefix_sum_int32(args: *mut PrefixSumArgs, chunk_id: u32, num_chunks: u32);
fn cpu_chunked_prefix_sum_int64(args: *mut PrefixSumArgs, chunk_id: u32, num_chunks: u32);
#[cfg(target_arch = "powerpc64")]
fn cpu_chunked_prefix_sum_simd_int32(args: *mut PrefixSumArgs, chunk_id: u32, num_chunks: u32);
#[cfg(target_arch = "powerpc64")]
fn cpu_chunked_prefix_sum_simd_int64(args: *mut PrefixSumArgs, chunk_id: u32, num_chunks: u32);
fn cpu_chunked_radix_partition_int32_int32(args: *mut RadixPartitionArgs);
fn cpu_chunked_radix_partition_int64_int64(args: *mut RadixPartitionArgs);
fn cpu_chunked_radix_partition_swwc_int32_int32(args: *mut RadixPartitionArgs);
fn cpu_chunked_radix_partition_swwc_int64_int64(args: *mut RadixPartitionArgs);
#[cfg(target_arch = "powerpc64")]
fn cpu_chunked_radix_partition_swwc_simd_int32_int32(args: *mut RadixPartitionArgs);
#[cfg(target_arch = "powerpc64")]
fn cpu_chunked_radix_partition_swwc_simd_int64_int64(args: *mut RadixPartitionArgs);
}
/// Arguments to the C/C++ prefix sum function.
///
/// Note that the struct's layout must be kept in sync with its counterpart in
/// C/C++.
#[repr(C)]
#[derive(Clone, Debug)]
struct PrefixSumArgs {
// Inputs
partition_attr: *const c_void,
data_len: usize,
canonical_chunk_len: usize,
padding_len: u32,
radix_bits: u32,
ignore_bits: u32,
// State
tmp_partition_offsets: *mut u32,
// Outputs
partition_offsets: *mut u64,
}
/// Arguments to the C/C++ partitioning function.
///
/// Note that the struct's layout must be kept in sync with its counterpart in
/// C/C++.
#[repr(C)]
#[derive(Debug)]
struct RadixPartitionArgs {
// Inputs
partition_attr_data: *const c_void,
payload_attr_data: *const c_void,
data_len: usize,
padding_len: usize, // FIXME: u32
radix_bits: u32,
ignore_bits: u32,
partition_offsets: *const u64,
// State
tmp_partition_offsets: *mut u64,
write_combine_buffer: *mut c_void,
// Outputs
partitioned_relation: *mut c_void,
}
/// A set of buffers used for software write-combining.
///
/// The original code by Cagri Balkesen allocates these SWWC buffers on the stack.
/// In contrast, this implementation allocates the SWWC buffers on the heap,
/// because new CPUs have very large L3 caches (> 100 MB). Allocating on the
/// stack risks a stack overflow on these CPUs. This can occur when using a large
/// fanout (i.e., a high number of radix bits).
///
/// # Invariants
///
/// * The `radix_bits` must match in `PartitionedRelation` and `CpuRadixPartitioner`.
///
/// * The backing memory must be aligned to the cache-line size of the machine.
/// Hint: `DerefMem::Numa` alignes to the page size, which is a multiple of
/// the cache-line size
#[derive(Debug)]
struct WriteCombineBuffer {
raw_memory: DerefMem<u64>,
}
impl WriteCombineBuffer {
/// Creates a new set of SWWC buffers.
fn new(radix_bits: u32, alloc_fn: DerefMemAllocFn<u64>) -> Self {
let buffer_bytes = unsafe { cpu_swwc_buffer_bytes() };
assert!(buffer_bytes as u32 <= constants::PADDING_BYTES, "Partition padding is too small for the SWWC buffers; padding must be at least {} bytes", buffer_bytes);
let align_bytes = mem::align_of::<CachePadded<u64>>();
let bytes = buffer_bytes * fanout(radix_bits) as usize + align_bytes;
let raw_memory = alloc_fn(bytes / mem::size_of::<u64>());
Self { raw_memory }
}
/// Returns a mutable slice to the aligned buffers
fn as_mut_slice(&mut self) -> &mut [u64] {
let (_, buffers, _) = unsafe {
self.raw_memory
.as_mut_slice()
.align_to_mut::<CachePadded<u64>>()
};
let buffer_bytes = unsafe { cpu_swwc_buffer_bytes() };
let len = buffer_bytes / mem::size_of::<u64>();
let buffers_slice =
unsafe { std::slice::from_raw_parts_mut(buffers.as_mut_ptr() as *mut u64, len) };
buffers_slice
}
/// Computes the number of tuples per SWWC buffer.
///
/// Note that `WriteCombineBuffer` contains one SWWC buffer per
fn tuples_per_buffer<T: Sized>() -> u32 {
let buffer_bytes = unsafe { cpu_swwc_buffer_bytes() };
(buffer_bytes / mem::size_of::<T>()) as u32
}
}
/// Specifies that the implementing type can be used as partitioning key in
/// `CpuRadixPartitioner`.
///
/// `CpuRadixPartitionable` is a trait for which specialized implementations
/// exist for each implementing type (currently i32 and i64). Specialization is
/// necessary because each type requires a different C++ function to be called.
///
/// See `CudaHashJoinable` for more details on the design decision.
pub trait CpuRadixPartitionable: Sized + DeviceCopy {
fn prefix_sum_impl(
rp: &mut CpuRadixPartitioner,
partition_attr: RadixPartitionInputChunk<'_, Self>,
partition_offsets: PartitionOffsetsMutSlice<'_, Tuple<Self, Self>>,
) -> Result<()>;
fn partition_impl(
rp: &mut CpuRadixPartitioner,
partition_attr: RadixPartitionInputChunk<'_, Self>,
payload_attr: RadixPartitionInputChunk<'_, Self>,
partition_offsets: PartitionOffsetsMutSlice<Tuple<Self, Self>>,
partitioned_relation: PartitionedRelationMutSlice<Tuple<Self, Self>>,
) -> Result<()>;
}
/// Specifies the histogram algorithm that computes the partition offsets.
#[derive(Copy, Clone, Debug)]
pub enum CpuHistogramAlgorithm {
/// `Chunked` computes a separate set of partitions per thread block. Tuples of the resulting
/// partitions are thus distributed among all chunks.
///
/// It was originally introduced for NUMA locality by Schuh et al. in "An Experimental
/// Comparison of Thirteen Relational Equi-Joins in Main Memory".
Chunked,
/// Prefix sum with SIMD optimizations.
///
/// This is the same algorithm as `Chunked`, but uses SIMD load instructions. Also, loops are
/// manually unrolled to 64 bytes.
///
/// # Limitations
///
/// Currently only implemented for PPC64le.
ChunkedSimd,
}
impl From<CpuHistogramAlgorithm> for HistogramAlgorithmType {
fn from(algorithm: CpuHistogramAlgorithm) -> Self {
match algorithm {
CpuHistogramAlgorithm::Chunked => Self::Chunked,
CpuHistogramAlgorithm::ChunkedSimd => Self::Chunked,
}
}
}
/// Specifies the radix partition algorithm.
#[derive(Copy, Clone, Debug)]
pub enum CpuRadixPartitionAlgorithm {
/// Non-caching radix partition.
///
/// This is a standard, parallel radix partition algorithm.
NC,
/// Radix partition with software write-combining.
///
/// This algorithm uses software-write combine buffers to avoid TLB misses.
/// The buffers are flushed using non-temporal SIMD stores on x86-64. In
/// contrast, PPC64le uses regular SIMD stores, as non-temporal hints
/// don't actually enforce streaming, but cause additional overhead.
Swwc,
/// Radix partition with software write-combining and SIMD optimizations.
///
/// This is the same algorithm as `Swwc`, but uses SIMD loads in addition to
/// the SIMD buffer flush. Also, loops are manually unrolled to 64 bytes.
///
/// # Limitations
///
/// Currently only implemented for PPC64le.
SwwcSimd,
}
#[derive(Debug)]
enum PrefixSumState {
Chunked(DerefMem<u32>),
ChunkedSimd(DerefMem<u32>),
}
/// Mutable internal state of the partition functions.
///
/// The state is reusable as long as the radix bits remain unchanged between
/// runs.
#[derive(Debug)]
enum RadixPartitionState {
NC(DerefMem<u64>),
Swwc(WriteCombineBuffer),
SwwcSimd(WriteCombineBuffer),
}
/// A CPU radix partitioner that provides partitioning functions.
#[derive(Debug)]
pub struct CpuRadixPartitioner {
radix_bits: u32,
prefix_sum_state: PrefixSumState,
radix_partition_state: RadixPartitionState,
}
impl CpuRadixPartitioner {
/// Creates a new CPU radix partitioner.
pub fn new(
prefix_sum_algorithm: CpuHistogramAlgorithm,
partition_algorithm: CpuRadixPartitionAlgorithm,
radix_bits: u32,
state_mem_type: DerefMemType,
) -> Self {
let num_partitions = fanout(radix_bits) as usize;
let vec_len = 4;
let unroll_len = 4;
let prefix_sum_state = match prefix_sum_algorithm {
CpuHistogramAlgorithm::Chunked => PrefixSumState::Chunked(Allocator::alloc_deref_mem(
state_mem_type.clone(),
num_partitions,
)),
CpuHistogramAlgorithm::ChunkedSimd => {
PrefixSumState::ChunkedSimd(Allocator::alloc_deref_mem(
state_mem_type.clone(),
num_partitions * vec_len * unroll_len,
))
}
};
let radix_partition_state = match partition_algorithm {
CpuRadixPartitionAlgorithm::NC => RadixPartitionState::NC(Allocator::alloc_deref_mem(
state_mem_type.clone(),
num_partitions,
)),
CpuRadixPartitionAlgorithm::Swwc => RadixPartitionState::Swwc(WriteCombineBuffer::new(
radix_bits,
Allocator::deref_mem_alloc_fn(state_mem_type.clone()),
)),
CpuRadixPartitionAlgorithm::SwwcSimd => {
RadixPartitionState::SwwcSimd(WriteCombineBuffer::new(
radix_bits,
Allocator::deref_mem_alloc_fn(state_mem_type.clone()),
))
}
};
Self {
radix_bits,
prefix_sum_state,
radix_partition_state,
}
}
/// Computes the prefix sum.
///
/// The prefix sum performs a scan over all partitioning keys. It first
/// computes a histogram. The prefix sum is computed from this histogram.
///
/// The prefix sum serves two main purposes:
///
/// 1. The prefix sums are used in `partition` as offsets in an array for
/// the output partitions.
/// 2. The prefix sum can also be used to detect skew in the data.
///
/// ## Parallelism
///
/// The function is thread-safe, and meant to be externally parallelized by
/// the caller.
pub fn prefix_sum<T: DeviceCopy + CpuRadixPartitionable>(
&mut self,
partition_attr: RadixPartitionInputChunk<'_, T>,
partition_offsets: PartitionOffsetsMutSlice<'_, Tuple<T, T>>,
) -> Result<()> {
T::prefix_sum_impl(self, partition_attr, partition_offsets)
}
/// Radix-partitions a relation by its key attribute.
///
/// See the module-level documentation for details on the algorithm.
pub fn partition<T: DeviceCopy + CpuRadixPartitionable>(
&mut self,
partition_attr: RadixPartitionInputChunk<'_, T>,
payload_attr: RadixPartitionInputChunk<'_, T>,
partition_offsets: PartitionOffsetsMutSlice<Tuple<T, T>>,
partitioned_relation: PartitionedRelationMutSlice<Tuple<T, T>>,
) -> Result<()> {
T::partition_impl(
self,
partition_attr,
payload_attr,
partition_offsets,
partitioned_relation,
)
}
}
macro_rules! impl_cpu_radix_partition_for_type {
($Type:ty, $Suffix:expr) => {
impl CpuRadixPartitionable for $Type {
paste::item! {
fn prefix_sum_impl(
rp: &mut CpuRadixPartitioner,
partition_attr: RadixPartitionInputChunk<'_, Self>,
mut partition_offsets: PartitionOffsetsMutSlice<'_, Tuple<Self, Self>>,
) -> Result<()> {
let radix_bits = rp.radix_bits;
if partition_offsets.radix_bits != radix_bits {
Err(ErrorKind::InvalidArgument(
"PartitionedRelation has mismatching radix bits".to_string(),
))?;
}
if partition_attr.chunk_id != partition_offsets.chunk_id {
Err(ErrorKind::InvalidArgument(
"PartitionOffsets has mismatching chunk ID".to_string(),
))?;
}
if partition_attr.num_chunks != partition_offsets.chunks {
Err(ErrorKind::InvalidArgument(
"PartitionOffsets has mismatching number of chunks".to_string(),
))?;
}
if partition_offsets.padding_len() < WriteCombineBuffer::tuples_per_buffer::<Tuple<Self, Self>>() {
Err(ErrorKind::InvalidArgument(
"Padding is too small; should be at least the SWWC buffer size".to_string(),
))?;
}
partition_offsets.set_data_len(partition_attr.total_data_len);
let (prefix_sum_fn, tmp_partition_offsets):
(
unsafe extern "C" fn(*mut PrefixSumArgs, u32, u32),
*mut u32
) = match rp.prefix_sum_state
{
PrefixSumState::Chunked(ref mut state) =>
(
[<cpu_chunked_prefix_sum_ $Suffix>],
state.as_mut_ptr(),
),
#[cfg(target_arch = "powerpc64")]
PrefixSumState::ChunkedSimd(ref mut state) =>
(
[<cpu_chunked_prefix_sum_simd_ $Suffix>],
state.as_mut_ptr(),
),
#[cfg(not(target_arch = "powerpc64"))]
PrefixSumState::ChunkedSimd(_) =>
unimplemented!()
};
let mut args = PrefixSumArgs {
partition_attr: partition_attr.data.as_ptr() as *const c_void,
data_len: partition_attr.data.len(),
canonical_chunk_len: partition_attr.canonical_chunk_len,
padding_len: partition_offsets.padding_len(),
radix_bits,
ignore_bits: 0,
tmp_partition_offsets,
partition_offsets: partition_offsets.offsets.as_mut_ptr(),
};
unsafe {
prefix_sum_fn(&mut args, partition_offsets.chunk_id, partition_offsets.chunks);
}
Ok(())
}
fn partition_impl(
rp: &mut CpuRadixPartitioner,
partition_attr: RadixPartitionInputChunk<'_, Self>,
payload_attr: RadixPartitionInputChunk<'_, Self>,
partition_offsets: PartitionOffsetsMutSlice<Tuple<Self, Self>>,
mut partitioned_relation: PartitionedRelationMutSlice<Tuple<Self, Self>>,
) -> Result<()>
{
if partition_attr.data.len() != payload_attr.data.len() {
Err(ErrorKind::InvalidArgument(
"Partition and payload attributes have different sizes"
.to_string()
))?;
}
if partitioned_relation.radix_bits != rp.radix_bits {
Err(ErrorKind::InvalidArgument(
"PartitionedRelation has mismatching radix bits"
.to_string()
))?;
}
if (partition_offsets.radix_bits != rp.radix_bits) {
Err(ErrorKind::InvalidArgument(
"PartitionOffsets has mismatching radix bits".to_string(),
))?;
}
if (partition_offsets.chunks != partitioned_relation.chunks) {
Err(ErrorKind::InvalidArgument(
"PartitionOffsets and PartitionedRelation have mismatching chunks".to_string(),
))?;
}
if (partition_offsets.padding_len() != partitioned_relation.padding_len()) {
Err(ErrorKind::InvalidArgument(
"PartitionOffsets and PartitionedRelation have mismatching padding".to_string(),
))?;
}
let data_len = partition_attr.data.len();
let (partition_fn, tmp_partition_offsets, write_combine_buffer):
(
unsafe extern "C" fn(*mut RadixPartitionArgs),
*mut u64,
*mut c_void,
) = match rp.radix_partition_state
{
RadixPartitionState::NC(ref mut offsets) =>
(
[<cpu_chunked_radix_partition_ $Suffix _ $Suffix>],
offsets.as_mut_ptr(),
ptr::null_mut(),
),
RadixPartitionState::Swwc(ref mut swwc) =>
(
[<cpu_chunked_radix_partition_swwc_ $Suffix _ $Suffix>],
ptr::null_mut(),
swwc.as_mut_slice().as_mut_ptr() as *mut c_void,
),
#[cfg(target_arch = "powerpc64")]
RadixPartitionState::SwwcSimd(ref mut swwc) =>
(
[<cpu_chunked_radix_partition_swwc_simd_ $Suffix _ $Suffix>],
ptr::null_mut(),
swwc.as_mut_slice().as_mut_ptr() as *mut c_void,
),
#[cfg(not(target_arch = "powerpc64"))]
RadixPartitionState::SwwcSimd(ref mut _swwc) =>
unimplemented!(),
};
let mut args = RadixPartitionArgs {
partition_attr_data: partition_attr.data.as_ptr() as *const c_void,
payload_attr_data: payload_attr.data.as_ptr() as *const c_void,
data_len,
padding_len: partitioned_relation.padding_len() as usize,
radix_bits: rp.radix_bits,
ignore_bits: 0,
partition_offsets: partition_offsets.offsets.as_ptr(),
tmp_partition_offsets,
write_combine_buffer,
partitioned_relation: partitioned_relation.relation
.as_mut_ptr() as *mut c_void,
};
unsafe {
partition_fn(
&mut args as *mut RadixPartitionArgs
);
}
// Copy offsets to PartitionedRelation.
unsafe {
partitioned_relation.offsets
.as_mut_slice()
.copy_from_slice(partition_offsets.offsets.as_slice());
}
Ok(())
}
}
}
};
}
impl_cpu_radix_partition_for_type!(i32, int32);
impl_cpu_radix_partition_for_type!(i64, int64);